- Evidence-based medicine (EBM)—asking clear, relevant clinical questions, finding appropriate studies, critically appraising the literature, and implementing changes in practice behavior

Cardiac arrhythmia suppression trial

Confounding factors

- If a study demonstrates that men who drink more alcohol have increased risk to develop lung cancer
- This is not a causal relationship:

Drinking alcohol is confounder to risk factor \& outcome Men who drink more also smoke more

The main point

EBM

- the use of mathematical estimates of the risk of benefit and harm , derived from high -quality research to inform clinical decision making in the management of individual patient

$$
\begin{gathered}
\text { Dr Sydney Burwell } \\
\text { Dean of Harvard Medical School } \\
1935-1949
\end{gathered}
$$

"Half of what you are taught as medical students will in 10 years have been shown to be wrong. And the trouble is, none of your teachers knows which half."

I am here because?
-I wanted 3 days of work
-Formulate an answerable questions

scientist is inundated with more papers than he or she can ever hope to read

High quality/relevant data
 Pearls

O How can diligent physicians narrow the gap between their current behaviors and best practices?

What's the " E " in EBM?

The best evidence is
 the evidence most likely to provide an unbiased view of the truth.
 Bias is difference between study results \& truth

- It has been recognized that providing evidence from clinical research is a necessity, but not sufficient, condition for the provision of optimal care

Being fair and open minded ; not dismissing anything without examination ,and not accepting anything without examination either

Patient's centered

Well according to these tests you're feeling much better! Maybe you just don't know it yet. .

To be an intelligent reader of the medical literature

Confounding factor systematic error due to influence of a third variable

Association of smoking \& lung cancer

Drinking more alcohol is confounder to:
risk factor (smoking) \& outcome (lung cancer)

Glasser SP. Essentials of clinical research. Springer , $1^{\text {st }}$ Edition, 2008.

The message is clear :

Keep sharp eye out for the believability of
whatever information we find wherever we find it

Judgmental\& Forming judgment

Judgmental

- involves attaching an emotional value of good or evil, generally harsh one ,to a persons, place, or idea.

Forming judgment

- forming an opinion , or evaluating the truth or falsehood of a claim , based upon discernment , logic and comparison.
- Since: CT is
-not forming emotional attachments to your opinions, -being fair, -looking simply for the truth (not for good or evil)

It is hard but worth it

rationalizing

- Start with conclusion $\sqrt{5}$
- finding the evidence for it

C. Thinker

- Start with evidence

- arriving to conclusion
- Start examining everything given to you
- Decide the merits of what is given based on clear and critical thinking and use that as a basis for your actions or opinions
- Do what you decide is the right thing for you to do
- To be persuasive we must be believable; to be believable we must be credible; to be credible we must be truthful.
(Edward R. Murrow)

Appraising validity

Validity refers to how close we think study results are to the truth.
validity
bias

Hierarchy of evidence

Hierarchy of study designs for interventions

validity

"Hierarchy of evidence"

Levels upon Levels of evidence

EBM can (amongst other things!)

- Help you make clinical decisions
- Share decision making with patients
- Provide better diagnostic reasoning
- Understanding benefits versus harms
- Allow you to practice more safely

EBM Pyramid and EBM Page Generator, 02006 Trustees of Dartmouth Calkge and Yake University All Rights Reserved. Produced by Jan Glower, David Lzoo, Karen Odato and Lei wang

Systematic review \& meta-analysis

MA may, or may not, include a SR

Egger M et all. Systematic reviews in health care: Meta-analysis in context. BMJ Publishing Group, London, $2^{\text {nd }}$ edition, 2001.

Type of Question

Therapy
Diagnosis
Prognosis
Etiology

Suggested best type of Study

RCT > Cohort > Case control > Case Series
RCT > Cohort
Cohort > Case Control > Case Series

Cohort > Case Control > Case Series

Question type \& study design

Question

In each case, SR of all available studies better than individual study

Identifying the Best Study

Question Type

Therapy
Diagnosis
Etiology
Prognosis

Systematic Review / RCT
Systematic Review / RCT
Systematic Review / Cohort
Systematic Review / Cohort

Level of Evidence

Grade of Recommendation

Grade A

- There is good evidence to support the recommendation, either for or against.

Grade B

- There is fair evidence to support the recommendation, either for or against.
- There is insufficient evidence to support the recommendation, either for or against.

The practice of EBM requires:

- Asking
- Acquiring
- Appraising
- Applying
later assessing the impact

Fig. 1 Model of evidence-based practice (EBP) [51]

Types of Clinical Questions

Background
 Foreground

General knowledge

Specific Questions

Ask who, what, when, where, PICO why

Background and Foreground Questions


```
A B
C
```

Types of questions

- More general
- Whole condition, symptoms, signs
- Pathophysiology
- Textbooks/online

- Specific clinical decisions
- Primary/pre assessed studies
- Patient centred
- Diagnosis, prognosis, management of disease

‘Background’ Questions

- About the disorder, test, treatment, etc.

2 components:
a. Root* + Verb: "What causes ..."
b. Condition: "... Ebola?"

- * Who, What, Where, When, Why, How

'Foreground' Questions

- About patient care decisions and actions

4 (or 3) components:
a. Patient, problem, or population
b. Intervention, exposure, or maneuver
c. Comparison (if relevant)
d. Clinical Outcomes (including time horizon)

Box 1.1 Well-built clinical questions

"Background" questions

Ask for general knowledge about a condition, test, or treatment Have two essential components:

1. A question root (who, what, where, when, how, why) and a verb.
2. A disorder, test, treatment, or other aspect of health care.

Examples:

"How does heart failure cause pleural effusions?"
"What causes swine flu?"

"Foreground" questions

Ask for specific knowledge to inform clinical decisions or actions Have four essential components:

1. P: Patient, population, predicament, or problem.
2. I: Intervention, exposure, test, or other agent.
3. C: Comparison intervention, exposure, test, and so on, if relevant.
4. O: Outcomes of clinical importance, including time, when relevant.

Example:

"In adults with heart failure and reduced systolic function, would adding the implantation of an electronic resynchronization device to standard therapy reduce morbidity or mortality enough over 3 to 5 years to be worth the potential additional harmful effects and costs?"

Does this intervention help?

For every 100 people with Bell's palsy at 3 months
83 in the corticosteroid group will have recovered facial function \&
64 in the placebo group will have recovered facial function

- Risk difference = 19\%
- Relative Risk Reduction = 23\%
- Number Needed to Treat = 6
- Natural Frequency 19 per 100

Background \& Foreground

Background vs Foreground Qs

Action and Care decisions

Aetiology and Pathology

The practice of EBM requires:

- Asking
- Acquiring
- Appraising
- Applying
later assessing the impact

We tend to receive knowledge passively at many stages of education

Programmed instruction was introduced in 1954 by B. F. Skinner of Harvard and much of
the system is based on his theory of the nature of learning, which is based on the principles of
small steps, self-pacing, and immediate feedback (Skinner, 1954). Programmed instruction
enables learners to work individually, calling for active participation of the learner.

Evolving EBM

- Early EBM: ("teach them to read it and they will come")
- Current EBM: Push diffusion ("read it for them and send it to them")

Synthesised sources : Systems, summaries and syntheses

Inform Clinician and patient decision making

Synthesised sources : Systems, summaries and syntheses

Point of care

Like electronic textbooks or
detailed clinical handbooks

Synthesised sources : Systems, summaries and syntheses

Save time and exersion

Evidence-Based Journals

Critical Appraisal Filters

50,000 articles/y
from 120 journals
~3,500 articles/y
meet appraisal
and content criteria
(93\% noise reduction)

McMaster PLUS Project

~3,500 articles/y meet critical appraisal and content criteria (93\% noise reduction)

Clinical Relevancy Filter (MORE)

~20 articles/yr for clinicians (99.96\% noise reduction)
~5-50 articles/y for authors of evidencebased clinical topic reviews

McMaster PLUS "Refinery" and Products

Using

- searches are restricted to evidence resources that have already undergone critical appraisal by others, such as evidence summaries

Evidence-Based Health Care Pyramid 5.0 for finding preappraised evidence and guidance. (From Alper BS, Haynes RB. EBHC pyramid 5.0 for accessing preappraised evidence and guidance.

Computerized decision support

Summaries integrating appraisal of 3 lower layers
(Guidelines): Synthesis (Summary of Multiple Appraised Guidelines)

Synopsis (Appraised and Extracted) Filtered view (Preappraised)

Synopsis (Appraised and Extracted) Filtered view (Preappraised)

EBM Pyramid and EBM Page Generator, 92006 Trustees of Dartmouth College and Yake University
All Rights Reserved. Produced by Jan Glover, David Izzo, Karen Odato and Lei Wang

Modes:
Doing
Using

Not everyone needs to do everything

doing

- in which at least the first four steps above are completed

clinicians can incorporate evidence into their practices in three ways

- "Doing" mode (1-4)
- "Using" mode(skipping Step 3)
- "Replicating" (mode) abandoning at least Steps 2 and 3)

practice EBM -doing mode

Using

- searches are restricted to evidence resources that have already undergone critical appraisal by others, such as evidence summaries

practice EBM -Using mode

Ask Pico question

Acquire the best evidence secondary

Apply evidence to patient care

Fortunately

- New resources to assist doctors are available and the pace of innovation is rapid

FORMULATE
 AN ANSWERABLE QUESTIONS

- Primary care physicians identify 2.4 clinical questions for every 10 encounters but they spend less than 15 minutes on average with each patient

PICO

Population Patient Problem	Intervention Or Exposure	Comparison	Outcome
Who are the patients? What is the problem?	What do we do to them? What are they exposed to?	What do we compare the intervention with?	What happens? What is the outcome?

Outcome:

"Who will get worse?"

Background:

Patient presenting with MI

1. What are the symptoms and signs of someone presenting with MI?
2. What are the diagnostic tests for MI?
3. What are the causes of MI ?
4. What are the treatments of MI?

Patient presenting with MI

Foreground' Questions

About actual patient care decisions and actions
For treatment 4 (or 3) components:

In Patients with a MI
Does (l) cholesterol lowering therapy
Compared to placebo
reduce mortality (O)

Patient presenting with MI (7 types of questions)

1. How common is the problem
2. Is early detection worthwhile
3. Is the diagnostic test accurate
4. What will happen if we do nothing
5. Does this intervention help
6. What are the common harms of an intervention
7. What are the rare harms of an intervention

Prevalence
Screening
Diagnosis
Prognosis
Treatment

Comparison: low molecular weight heparins versus unfractionated heparin for acute coronary syndrome
Outcomes: any cardiovascular event within 48 hours

Study	Treatment	Control		Relative Risk
$\begin{aligned} & \text { ESSENCE } \\ & 1997 \end{aligned}$	99/1607	115/1564		0.84 (0.65-1.09)
$\begin{aligned} & \text { TIMI 11B } \\ & 1999 \end{aligned}$	108/1953	142/1957		0.76 (0.60-0.97)
Total	207/3560	257/3521		0.80 (0.67-0.95)
Test for heterogeneity chi-square $=0.27, p=0.60$				
Line of 'no difference'				

1. how many studies the review included: just count the number of trees!
2. which studies are the largest: the bigger the square in the middle, the bigger the study.
3. which studies had more outcome events: these have the narrowest $95 \% \mathrm{CI}$.
4. which studies showed statistically significant benefit (entire line is to the left of 1.0).
5. which studies showed statistically significant harm (entire line is to the right of 1.0).
6. which studies were inconclusive (line straddles 1.0 and extends far into either side).
7. which studies were inconclusive but showed a trend towards benefit (line is on the left, and barely touches 1.0).
8. which studies were inconclusive but showed a trend towards harm (line is on the right, and barely touches 1.0).
9. which studies show that the therapies are equal (line straddles 1.0 and doesn't go far to either side).
10. whether there are important differences (heterogeneity) between studies: if the lines hardly overlap, we should worry.

- we've all learned that teachers and examinations do not reward us for showing our ignorance and being ready and willing to learn.

Odds Ratios and Relative Risk

Case-control studies
Odds of exposure in the case group divided by the odds of exposure in the control group Cohort and RCT' $=$
Ratio of the odds of disease in the
exposed vs. the unexposed
Exposure

$$
R R=\frac{a /(a+b)}{c /(c+d)}
$$

ReldsiveaRiosk

Outcome

$$
+
$$

Spironolactone in CHF (RALES)

NEJM 1999; 341: 709

ماهو الفرق المطلق في الخطر بين المجمو عتين؟


```
Odds Ratios and Relative Risk
```

```
*
```

```
*
```

nTrain the

odds ratio.

- The association between exposure (i.e., HRT) and outcome (i.e., CHD) in a case-control study is typically summarized by a statistical measure called
odds ratio.

odds ratio

- An odds ratio is an estimation of the true relative risk for the outcome in question.

RR - Relative Risk

- Definition:

A measure of the strength of association based on prospective studies (cohort studies).

The relative risk (RR) :is the probability that a member of an exposed group will develop a disease relative to the probability that a member of an unexposed group will develop that same disease

How to calculate the RR

interesting outcome
 present absent

Exposed

Not exposed

Total
$a+c$
b+d
$a+b+c+d$

$$
R R=[a /(a+b)] /[c /(c+d)]
$$

Absolute Risk Reduction

- (ARR) refers to the decrease of a bad event as a result of the intervention
- [ARR = EER-CER]

Relative Risk Reduction (RRR)

- is the proportional reduction in risk between the rates of events in the control group and the
- experimental group.
- Relative Risk Reduction is often a larger number than the ARR and
- therefore may tend to exaggerate the difference
- [RRR = EER - CER/CER].
- An RR of 1.0 indicates no difference applicable
- it is the number of patients that a clinician would have to treat with the experimental treatment to achieve one additional patient with a favorable outcome
[NNT = 1/ARR]

NNTs from Controlled Trials

CER\% EER\% ARR\% NNT

Population: hypertensive 60-year-olds Therapy: oral diuretics
Outcome: stroke over 5 years
Population: myocardial infarction Therapy: β-blockers Outcome: death over 2 years

Population: acute myocardial infarction Therapy: streptokinase (thrombolytic) Outcome: death over 5 weeks

Control event rate (CER)
Absolute risk reduction (ARR)
Experimental event rate (EER)

2.9	1.9	1	100
9.8	7.3	2.5	40
12	9.2	2.8	36

Risk ratio, or relative risk (RR)

- The ratio of risk in the treated group (EER) to the risk in the control group (CER). This is used in randomized trials and cohort studies and is calculated as EER/CER.
- RRR is the most commonly reported summary measure of treatment effect
- To truly understand the effectiveness of the treatment we should consider the absolute risk reduction "ARR" and "NNT

Relative versus Absolute measures of treatment effect

- Relative measures
- RRR
- RR
- Absolute measure
- ARR
- NNT

	Control		Experimental
Event		a	b

	active	control
improved	80	20
N	100	100

Relative Risk (RR) $=\left(I \mathrm{mp}_{\mathrm{act}} / \mathrm{N}_{\mathrm{act}}\right) /\left(I \mathrm{mp} \mathrm{p}_{\text {con }} / \mathrm{N}_{\text {con }}\right)$
Relative Risk Reduction $(R R R)=(1-R R) / 100$
Absolute Risk (AR) $=\left(1 \mathrm{mp}_{\mathrm{act}} / \mathrm{N}_{\mathrm{act}}\right)-\left(\mathrm{Imp}_{\text {con }} / \mathrm{N}_{\text {con }}\right)$ Number Needed to Treat (NNT) $=1 / A R$

$$
R R=4 ; A R=0.6 ; \text { NNT }=1.7 \text { (best } 1.25 \text {) }
$$

" 2 by 2 " table in qualitative data hypertension in smokers

Exposure (smoking)	Disease (hypertension)		Total
	Hypertension	No hypertension	
Smokers	a	b	$\mathrm{a}+\mathrm{b}$
Non-smokers	c	d	$\mathrm{c}+\mathrm{d}$
Total	$\mathrm{a}+\mathrm{c}$	$\mathrm{b}+\mathrm{d}$	$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$

" 2 by 2 table" in qualitative data

Exposure (smoking)	Disease (hypertension)		Total
	Hypertension	No hypertension	
Smokers	120	280	400
Non-smokers	30	570	600
Total	150	850	1000

Risk of HTA in smokers:	$\mathrm{a} /(\mathrm{a}+\mathrm{b})=120 / 400=0.3$
Risk of HTA in non-smokers:	$\mathrm{c} /(\mathrm{c}+\mathrm{d})=30 / 600=0.05$
Relative Risk (RR):	$0.3 / 0.05=6$

Odds of HTA in smokers	$\mathrm{a} / \mathrm{b}=120 / 280=0.43$
Odds of HTA in non-smokers	$\mathrm{c} / \mathrm{d}=30 / 570=0.053$
Odds Ratio $($ OR $):$	$(\mathrm{a} / \mathrm{b}) /(\mathrm{c} / \mathrm{d})=0.43 / 0.053=8.11$

Number Needed to Treat (NNT):

An NNT is just one part of the information required in making a purchasing decision

RR	ARR	RRR	Meaning
<1	>0	>0	Less events in experimental group
1	0	0	No difference between the groups
>1	<0	<0	More events in experimental group

Interpretation of RR \& OR

RR or OR should be accompanied by their CIs

```
RR or OR > 1
Increased likelihood of outcome in exposed group
RR or OR < 1
Decreased likelihood of outcome in exposed group
RR or OR = 1
No outcome difference between exposed & control groups
```

ARR is a more clinically relevant measure to use than the RR or RRR. This is because relative measures 'factor out' the baseline risk, so that small differences in risk can seem significant when compared to a small baseline risk.

ow your background

Numbers needed to treat (NNTS)

The Number of people who have to be treated for ONE to benefit

Number-needed-to-treat (NNT)

	Controls	Actives
Number of patient	Ncon	Nact
Improved = Clinical end point	Imp	Impact

1

NNT=

$$
\frac{\text { IMP act }}{N \text { act }}-\frac{\text { IMP con }}{N \operatorname{con}}
$$

Number-needed-to-treat (NNT)

NNT is treatment specific -takes into account the event rate in controls:

- may be a placebo effect
- may be the effect of another treatment

$$
N N T=\frac{1}{\frac{100}{\mathbf{1 0 0}}-\frac{\mathbf{0}}{\mathbf{1 0 0}}}
$$

Number needed to treat (NNT)
Number needed to treat is the most useful measure of benefit, as it tells you the absolute number of patients who need to be treated to prevent one bad outcome. It is the inverse of the ARR:

$$
\text { NNT }=1 / \text { ARR }
$$

